
DS2 VERSION B CORRECTION

ECG2 MATHS APPLIQUÉES

Barème (officiel du concepteur).

Partie I

1. a. 1 point.

b. 2 points.

2. a. (i) 1.5 point.

(ii) 1.5 point.

b. (i) 2 points.

(ii) 1 point.

(iii) 1 point.

c. 1.5 point.

3. 2 points.

4. a. 1.5 point.

b. 2 points.

c. 1 point.

5. a. 1 point.

b. 2 points.

c. 2 points.

6. a. 2.5 points.

b. 2 points.

c. 1.5 point.

d. (i) 2 points.

(ii) 2 points.

(iii) 1.5 point.

(iv) 2 points.

e. 1.5 point.

Total Partie I : 38 points.

Partie II

7. 2 points.

8. a. 2.5 points.

b. 2 points.

c. 2 points.
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d. (i) 2 points.

(ii) 1.5 point.

(iii) 1.5 point.

e. 2 points.

f. 1.5 point.

9. a. 2 points.

b. 2 points.

c. 1.5 point.

d. (i) 1 point.

(ii) 2 points.

e. 2 points.

f. 2 points.

g. 2 points.

h. 1 point.

Total Partie II : 32.5 points.

Partie III

10. a. 1 point.

b. 1.5 point.

11. 1.5 point.

12. a. 1.5 point.

b. 1.5 point.

c. 1.5 point.

13. a. 1 point.

b. 1.5 point.

c. 2 points.

d. (i) 1.5 point.

(ii) 1.5 point.

e. 1.5 point.

f. 1.5 point.

g. 1.5 point.

14. a. (i) 1.5 point.

(ii) 1.5 point.

b. 2 points.

c. 1.5 point.

d. 1.5 point.

e. 2 points.

Total Partie III : 30.5 points.

Total : 101 points.
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Erreurs fréquentes / Commentaires.

Correction détaillée.

Partie 1 - Propriétés des variables aléatoires simples.

1. On considère une variable aléatoire simple X.

a. Comme X(Ω) = {x1, ..., xn} est un ensemble �ni, alors Xk(Ω) = {xk1, ..., xkn} est encore un
ensemble �ni, ainsi Xk admet une espérance. De plus, le théorème de transfert permet d'a�rmer
que

E(Xk) =

n∑
i=1

xki P (X = xi).

b. SoientX,Y deux variables aléatoires simples, supposées indépendantes. NotantX(Ω) = {x1, .., xn}
et Y (Ω) = {y1, .., ym}, on a, par le théorème de transfert,

E(XY ) =
n∑
i=1

m∑
j=1

xiyjP ([X = xi] ∩ [Y = yj ])

=

n∑
i=1

m∑
j=1

xiyjP ([X = xi]P ([Y = yj ]) par indépendance de X et Y )

=

n∑
i=1

xiP ([X = xi]

m∑
j=1

yjP ([Y = yj ]) =

n∑
i=1

xiP ([X = xi]E(Y )

= E(Y )

n∑
i=1

xiP ([X = xi]

= E(X)E(Y ),

ce qui est la formule attendue.

2. On note maintenant X(Ω) = {x1, ..., x`} et, pour i ∈ J1, `K, pi = P (X = xi).

a.

(i) Par le théorème de transfert,

MX(t) = E(etX) =
∑̀
i=1

etxipi

(ii) Pour tout t ∈ R et pour tout i ∈ J1; `K, on a bien etxi > 0 et pi > 0. Par produit, puis par
somme (�nie), on a alors MX(t) > 0, pour tout t ∈ R.

b. (i) On procède par récurrence sur k ∈ N.

� intialisation. Pour n = 0, par dé�nition

M
(0)
X (t) = MX(t) = E(etX) = E(X0etX),

et la formule est vraie.
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� hérédité. Supposons que, pour un certain n ∈ N, on ait M
(k)
X (t) = E(XketX) (HR).

Alors,

M
(k+1)
X (t) =

(
M

(k)
X

)′
(t)

=

(∑̀
i=1

xki e
txipi

)′
(par HR et théorème de transfert)

=
∑̀
i=1

xk+1
i etxipi

= E(Xk+1etX) (par théorème de transfert)

ce qui termine la récurrence.

(ii) D'après la question précédente

M
(k)
X (0) =

∑̀
i=1

xki pie
0 =

∑̀
i=1

xki pi

= E(Xk) (toujours par théorème de transfert)

(iii) Par la formule de König-Huyguens et la question précédente,

V (X) = E(X2)− E(X)2 = M ′′X(0)−M ′X(0)2.

c. Par ce qui précède (même si on n'a jamais justi�é que MX était de classe Ck sur R, il apparaît
clair qu'elle est de classe C∞ comme combinaison linéaire d'exponentielles, elle est en particulier
de classe C2 sur R), on a

M ′′X(t) = E(X2etX) =
∑̀
i=1

x2i e
txipi

Avec le même argument que précédemment (somme de termes strictement positifs) la somme
ci-dessus est strictement positive (et ce, pour tout t ∈ R). Donc MX est convexe sur R.

3. On note Sn = X1 + ...+Xn, où les Xi sont (mutuellement) indépendantes.

MSn(t) = E(etSn) = E
(
et(X1+...+Xn)

)
= E

(
etX1etX2 ...etXn

)
Par le lemme des coalitions, les variables etX1 , etX2 , ..., etXn sont aussi mutuellement indépendantes.
Il faut alors commencer par étendre le résultat de la question (1b) par récurrence. Montrons que, si
Y1, ..., Yn mutuellement indépendantes (et simples) alors

E(Y1Y2...Yn) = E(Y1)E(Y2)...E(Yn)

Il n'y a pas besoin d'initialiser cette récurrence. Supposons que le résultat soit vrai pour un certain n.
On considère alors Y1, ..., Yn+1 mutuellement indépendantes. Observons que Y1Y2 · · ·Yn est encore une
variable aléatoire simple (elle prend un nombre �ni de valeurs) qui est, par le lemme des coalitions,
indépendante de Yn+1. Alors, par (1b), on a

E(Y1Y2...Yn+1) = E(Y1Y2...Yn)E(Yn+1)

Mais on peut maintenant appliquer l'hypothèse de récurrence pour écrire

E(Y1Y2...Yn+1) = E(Y1)E(Y2)...E(Yn)E(Yn+1)

et la récurrence est terminée. En appliquant le résultat avec Yi = etXi , on a la formule demandée

MSn(t) =
n∏
i=1

E(etXi)
n∏
i=1

MXi(t).
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4. On suppose ici que X ↪→ B(p), où p ∈]0; 1[.

a. Comme X(Ω) = {0; 1}, on a

MX(t) =

1∑
i=0

etiP (X = i) = (1− p) + pet.

b. On dérive. M ′X(0) = pe0 = p = E(X). On a aussi M ′′X(0) = p.

c. On retrouve bien

V (X) = p(1− p) = p− p2 = M ′′X(0)−M ′X(0)2.

5. Soit Y une v.a simple avec Y (Ω) = {y1, ..., y`}, pi = P (Y = yi) > 0 véri�ant E(Y ) < 0 et
P (Y > 0) > 0.

a. D'après ce qui précède, M ′Y (0) = E(Y ) < 0 par hypothèse. Il n'y a donc rien à faire de plus.

b. On sait que MY (t) =
∑̀
i=1

pie
tyi .

Il y a dans cette somme des indices pour lesquels yi ≤ 0 mais aussi des indices (et au moins un,
sinon P (Y > 0) ne serait pas strictement positive) pour lesquels yi > 0. En prenant le plus grand,
c'est à dire

γ = max{yi ∈ Y (Ω) : yi > 0}
et en notant m tel que ym = γ, on a, par factorisation

MY (t) =
∑̀
i=1

pie
tyi ∼ ymeymt −→ +∞, t→ +∞.

c. Cette question vise à montrer que la fonction MY admet un minimum sur ]0; +∞[ et est un peu
subtile.

On peut raisonner avec les informations à dispositions : M ′′Y (t) > 0 pour tout t ∈ R, donc M ′Y est
strictement croissante. Si, pour tout t > 0, on avait M ′Y (t) ≤ 0, alors MY serait décroissante sur
]0; +∞[, ce qui est incompatible avec la limite in�nie montrée à la question précédente. Donc il
existe t1 > 0 tel que M ′Y (t1) > 0. Par stricte croissante de M ′Y , on a donc M ′Y (t) > 0 pour tout
t ≥ t1. En appliquant le théorème de bijection à M ′Y celle-ci réalise une bijection de ]0,∞[ sur
un ensemble J qui contient ]M ′Y (0);M ′Y (t1)[ qui lui même contient 0 qui admet donc un unique
antécédent τ > 0 par M ′Y qui est bien la valeur où le minimum de MY est atteinte :

t

M ′Y (t)

MY

0 τ +∞

− 0 +

E(Y )E(Y )

MY (τ)MY (τ)

+∞+∞

6. Soit a < 0 < b et X une variable simple d'espérance nulle telle que P (<≤ X ≤ b) = 1.
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a. C'est une inégalité de convexité. On sait que, pour toute fonction convexe f sur [a, b] pour tous
λ, µ tels que λ+ µ = 1, on a

f(λa+ µb) ≤ λf(a) + µf(b).

Soit t > 0 �xé. On va donc appliquer ceci avec f : x 7→ etx (qui est clairement convexe car de

dérivée seconde égale à t2etx strictement positive), λ =
b− u
b− a

et µ =
u− a
b− a

.

(On a bien

λ+ µ =
b− u
b− a

+
u− a
b− a

=
b− a
b− a

= 1.)

On obtient donc, en observant que

λa+ µb =
b− u
b− a

a+
u− a
b− a

b =
ba− ua+ ub− ab

b− a
= u

etu = exp (t (λa+ µb))

≤ λeta + µetb

=
b− u
b− a

eta +
u− a
b− a

etb,

ce qu'on voulait.

b. On applique cette inégalité avec u = xi qui est bien un élément (pour tout i ∈ J1; `K) de [a, b] par
hypothèse. Ceci donne

etxi ≤ b− xi
b− a

eta +
xi − a
b− a

etb.

En injectant cette inégalité dans la formule obtenue en (2a)-(i), et du fait que

∑̀
i=1

pi = 1,
∑̀
i=1

pixi = E(X) = 0,

on a

MX(t) =
∑̀
i=1

pit
xi

≤
∑̀
i=1

pi

(
b− xi
b− a

eta +
xi − a
b− a

etb
)

= eta

(
b

b− a
− 1

b− a
∑̀
i=1

xipi

)
+ etb

(
1

b− a
∑̀
i=1

xipi −
a

b− a

)

=
b

b− a
eta − a

b− a
etb.

On pose b =
−a
b− a

et on introduit la fonction

ψ : s 7−→ ln (1− p+ pes)− ps

c. C'est une simple véri�cation néanmoins un peu lourde du fait des notation. Observant que p(b−
a) = −a,
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exp (ψ(t(b− a))) =
1− p+ pet(b−a)

ept(b−a)

= eat
(

1− p+ pet(b−a)
)

= eat +
a

b− a
eat − a

b− a
ebt

=
b

b− a
eat − a

b− a
eat

≥ MX(t) (par la question précédente)

d.

(i) On véri�e
ψ(0) = ln(1− p+ p) = 0,

ψ′(s) =
pes

1− p+ pes
− p, ψ′(0) =

p

1− p+ p
− p = 0.

(ii) Soient u, v > 0. On a

4uv − (u+ v)2 = 4uv − u2 − 2uv − v2 = −u2 + 2uv − v2 = −(u− v)2 ≤ 0

ce qui donne bien l'inégalité souhaitée.

(iii) On commence par calculer la dérivée seconde :

ψ′′(s) =
pes(1− p+ pes)− pespe− s

(1− p+ pes)2
=

pes(1− p)
((1− p) + pes)2

On va alors appliquer l'inégalité de la question précédente avec u = 1−p > 0 et v = pes > 0.
Comme l'inégalité se réécrit

uv

(u+ v)2
≤ 1

4
,

on a bien ψ′′(s) ≤ 1/4 comme demandé.

(iv) Posons la fonction h : s 7→ ψ(s)− 1
8s

2. On a

h′(s) = ψ′(s)− 1

4
s, h′′(s) = ψ′′(s)− 1

4
≤ 0.

Ainsi, on a les tableaux en cascade

s

h′′(s)

h′

h′(s)

h

h(s)

0 +∞

−

00

0 −

00

0 −
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En particulier, h(s) ≤ 0 pour tout s > 0, ou encore ψ(s) ≤ 1

8
s2.

e. En combinant les Question (6c) et (6d)− (iv), on a, par croissance de l'exponentielle,

MX(t) ≤ exp (ψ(t(b− a))) ≤ exp

(
1

8
t2(b− a)2

)
.

Partie 2 - Quelques inégalités.

7. On va utiliser l'inégalité de Jensen, avec la fonction ln qui est concave. Notant comme précédemment
X(Ω) = {xi : i ∈ JA, `K} et pi = P (X = xi) (ce qui donne bien p1 + p2 + ...+ p` = 1), on a

ln(E(X)) = ln

(∑̀
i=1

xipi

)

≥
∑̀
i=1

pi ln(xi) (par l'inégalité de concavité)

= E(ln(X)) (par le théorème de transfert),

ce qu'on voulait.

8. Soient p, q ≥ 1 deux réels tels que
1

p
+

1

q
= 1.

a. Soient a, b deux réels strictement positifs (si a ou b est nul, l'ingalité est triviale). On a

ln

(
1

p
ap +

1

q
bq
)
≥ 1

p
ln(ap) +

1

q
ln(bq) (par concavité de ln)

= ln(a) + ln(b) = ln(ab).

En composant par l'exponentielle, croissante, on a bien

1

p
ap +

1

q
bq ≥ ab.

b. Soit ω ∈ Ω. D'après ce qui précède, comme X,Y sont à valeurs positives, X(ω) et Y (ω) sont des
nombres positives et on a

1

p
X(ω)p +

1

q
Y (ω)q ≥ X(ω)Y (ω).

Ceci étant vrai pour tout ω ∈ Ω, par positivité de l'espérance, puis par linéarité de celle-ci, on a

1

p
E(Xp) +

1

q
E(Y q) = E

(
1

p
Xp +

1

q
Y q

)
≥ E(XY ),

ce qui est l'inégalité demandée.

c. Soit λ > 0. On applique l'inégalité précédente, en remplaçant X par λX également à valeurs
positives. On a

λE(XY ) = E(λXY ) ≤ 1

p
E((λX)p) +

1

q
E(Y q) =

λp

p
E(X) +

1

q
E(Y q)

puis en divisant par λ > 0, on obtient bien

E(XY ) ≤ λp−1

p
E(Xp) +

λ−1

q
E(Y q).

Ouf ! Un peu astucieux...
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d. Soient α, β deux réels strictement positifs. On dé�nit la fonction ϕ sur R∗+ en posant

ϕ(λ) =
1

p
λp−1α+

1

q
λ−1β.

(i) On commence par dériver

ϕ′(λ) =
p− 1

p
λp−2α− 1

q
λ−2β =

1

qλ2
(αλp − β) .

Notons λ0 =

(
β

α

)1/p

. On peut dresser le tableau de variations :

λ

ϕ′(λ)

ϕ

0 λ0 +∞

− 0 +

+∞

ϕ(λ0)ϕ(λ0)

+∞+∞

(ii) Le minimum de ϕ est donc atteint en λ0 dé�ni ci-dessus.

(iii) La valeur minimale de ϕ est donc

ϕ(λ0) =
1

p
α

(
β

α

)(p−1)/p
+

1

q
β

(
β

α

)−1/p
.

Observons que
p− 1

p
= 1− 1

p
=

1

q
.

Ainsi,

ϕ(λ0) =
1

p
α1−1/qβ1/q +

1

q
α1/pβ−1/p+1

=
(
α1/pβ1/q

)(1

p
+

1

q

)
= α1/pβ1/q.

e. L'inégalité obtenue en (8c) étant vraie pour tout λ > 0, on choisit la valeur de λ qui rend le terme
de droite minimal, c'est à dire λ = λ0 d'après les deux questions précédentes. Avec α = E(Xp)
et β = E(Y q) (comme X et Y sont simples et à valeurs strictement positives, les espérances
précédentes sont des réels strictement positifs). Il suit que

E(XY ) ≤ ϕ(λ0) = E(Xp)1/pE(Y q)1/q,

ce qui est bien l'inégalité de Hölder et répond à la question.

f. Dans le cas p = q = 2, cette inégalité s'écrit comme

E(XY ) ≤ E(X2)1/2E(Y 2)1/2 =
√
E(X2)E(Y 2)

elle porte aussi le nom (dans ce cas particulier) d'inégalité de Cauchy-Schwarz.
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9. On considère une v.a simple X d'espérance nulle, on note σ2 = E(X2) > 0, ξ4 = E(X4) > 0. On
introduit les deux v.a

X+ = max(X, 0), X− = max(−X, 0)

et on pose δ = P (X ≥ 0).

a. On procède par disjonction de cas. Soit ω ∈ Ω.

� Si X(ω) ≥ 0, alors X+(ω) = X(Ω) et comme −X(ω) ≤ 0, X−(ω) = 0 on a dans ce cas
X+(ω)−X−(ω) = X(ω).

� Si X(ω) < 0, alors X+(ω) = 0 et comme −X(ω) > 0, X−(ω) = −X(ω) on a dans ce cas
X+(ω)−X−(ω) = X(ω).

Dans les deux cas la formule est vraie. On a bien

X = X+ −X−.

Par linéarité de l'espérance, on a E(X+)− E(X−) = E(X) = 0 ou encore E(X+) = E(X−).

b. On raisonne de la même manière. Soit ω ∈ Ω.

� Si X(ω) ≥ 0, alors X+(ω) = X(Ω) et comme −X(ω) ≤ 0, X−(ω) = 0 on a dans ce cas
X+(ω)2 +X−(ω)2 = X(ω)2.

� Si X(ω) < 0, alors X+(ω) = 0 et comme −X(ω) > 0, X−(ω)2 = (−X(ω))2 on a dans ce
cas X+(ω)2 +X−(ω)2 = X(ω)2.

Dans les deux cas la formule est vraie. On a bien

X2 = (X+)2 + (X−)2.

Toujours par linéarité de l'espérance, on obtient σ2 = E(X2) = E((X+)2) + E((X−)2).

c. Comme on peut écrire

X+ = X +X−

et que X− est à valeurs positives, on a X+ ≤ X ce qui donne (X+)4 ≤ X4 et par croissance de
l'espérance E((X+)4) ≤ E(X4) = ξ4. De la même manière, on obtient E((X−)4) ≤ E(X4) = ξ4.

d. On introduit la v.a W dé�nie par W (ω) =

{
1, si X(ω) ≥ 0
0, sinon

.

(i) Soit ω ∈ Ω.
Si X(ω) ≥ 0, alors W (ω) = 1 et X+(ω) = X(ω) donc W (ω)X(ω) = X(ω) = X+(ω).
Si X(ω) < 0, alors W (ω) = 0 et X+(ω) = 0 donc W (ω)X(ω) = 0 = X+(ω).
Dans les deux cas, on a bien l'égalité demandée, donc WX = X+.

(ii) De la question précédente, on déduit

E((X+)2) = E(W 2X2)

≤
√
E(W 4)E(X4) (par Hölder avecp = q = 1/2)

=
√
δξ4 =

√
δξ2

car W 4 = W est une loi de Bernoulli de paramètre (et donc d'espérance) P (W = 1) =
P (X ≥ 0) = δ.

e. Malgré l'indication, il faut penser à bien choisir les v.a auxquelles on applique l'inégalité de
Hölder, plus précisément, il faut découper

(X−)2 = (X−)2/3(X−)4/3
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Par Hölder, on a alors

E((X−)2) = E
(

(X−)2/3(X−)4/3
)

≤ E

((
(X−)2/3

)3/2)2/3

E

((
(X−)4/3

)3)1/3

= E(X−)2/3E((X−)4)1/3,

ce qu'on voulait.

f. Toujours avec Hölder

E(X−) = E(X+) = E(XW )

≤ E(X4)1/4E(W 4/3)3/4

= ξδ3/4,

ce qu'on nous demandait.

g. D'après la question précédente, on a également

E(X−)2/3 ≤
(
ξδ3/4

)2/3
= ξ2/3

√
δ.

D'après la question (9c), on a E((X−)4) ≤ ξ4 donc E((X−)4)1/3 ≤ ξ4/3. En combinant ces deux
inégalités et la question (9e), on obtient

E((X−)2) ≤ E(X−)2/3E((X−)4)1/3 ≤ ξ2/3
√
δξ4/3 =

√
δξ2.

Comme on a également, d'après (9d) − (ii) que E((X+)2) ≤
√
δξ2, on peut conclure, grâce à a

question (9b) que

σ2 = E((X+)2) + E((X−)2) ≤
√
δξ2 +

√
δξ2 = 2

√
δξ2,

ce qui est bien le résultat voulu. Ouf !

h. En élevant l'inégalité précédente au carré, on obtient

σ4 ≤ 4δξ4,

ou encore

P (X ≥ 0) = δ ≥ σ4

4ξ4
,

ce qui fait quand même bien plaisir.

Partie 3 - Grandes déviations. On considère une v.a simple Y d'espérance nulle, telle que Y (Ω) =
{y1, ..., y`} avec {y1, .., yk} ⊂ R+ (et {yk+1, ..., y`} ⊂ R∗−), on note pi = P (Y = yi) > 0. On note τ la valeur
strictement positive où MY atteint son minimum et

ρ = M(τ).

Ainsi, pour tout t > 0, MY (t) ≥ ρ.

10.

a. Il est clair, comme τ > 0, que

[Y ≥ 0] ⇐⇒ [τY ≥ 0]

⇐⇒ [eτY ≥ 1]

et donc
P (Y ≥ 0) = P (eτY ≥ 1).
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b. La v.a eτY est positive et admet une espérance. Par l'inégalité de Markov, on a

P (Y ≥ 0) = P (eτY ≥ 1) ≤ E(eτY )

1
= MY (τ) = ρ.

11. Par le théorème de transfert∑̀
i=1

eτyi

ρ
P (Y = yi) =

1

ρ

∑̀
i=1

eτyiP (Y = yi) =
1

ρ
E(eτY ) =

1

ρ
MY (τ) = 1.

On considère une v.a Z telle que Z(Ω) = {y1, ..., y`} et

∀i ∈ J1, `K, P (Z = yi) =
eτyi

ρ
P (Y = yi).

(Du fait de la question précédente, la formule ci-dessus dé�nit bien une v.a.)

12.

a. Par la question (2a),

MZ(t) =
∑̀
i=1

P (Z = yi)e
tyi

=
∑̀
i=1

etyi
eτyi

ρ
P (Y = yi)

=
1

ρ

∑̀
i=1

e(t+τ)yiP (Y = yi)

= ρ−1MY (t+ τ).

b. Par la question (2b)− (ii), E(Z) = M ′Z(0). Or, d'après la formule ci-dessus

M ′Z(t) = ρ−1M ′Y (t+ τ).

Mais alors
E(Z) = M ′Z(0) = ρ−1M ′Y (τ) = 0

car τ est le minimum de MY et donc la dérivée s'y annule, comme on l'a vu auparavant.

c. Toujours d'après la Question (2b)− (ii), on sait que

E(Z2) = M ′′Z(0) = ρ−1M ′′Y (0τ) > 0,

d'après (2a)− (ii).

13.

a. On commence par observer que

P (Y = yi) = ρP (Z = yi)e
−τyi .

Ensuite, on somme les probabilités des valeurs positives :

P (Y ≥ 0) =

k∑
i=1

P (Y = yi)

=

k∑
i=1

ρP (Z = yi)e
−τyi

= ρ
k∑
i=1

P (Z = yi)e
−τyi
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On pose δ = P (Z ≥ 0).

b. Les v.a Y et Z prennent les mêmes valeurs donc

Y (Ω) ∩ R+ = Z(Ω) ∩ R+ = {y1, ..., yk},
il suit donc que

k∑
i=1

δ−1P (Z = yi) =

∑k
i=1 P (Z = yi)

P (Z ≥ 0)
=
P (Z ≥ 0)

P (Z ≥ 0)
= 1.

c. La somme précédente étant égale à 1, on peut utiliser l'inégalité de concavité.

ln

(
k∑
i=1

δ−1P (Z = yi)e
−τyi

)
≥

k∑
i=1

δ−1P (Z = yi) ln
(
e−τyi

)
= −τδ−1

k∑
i=1

P (Z = yi)yi

d.

(i) Par théorème de transfert

E(|Z|) =
∑̀
i=1

|yi|P (Z = yi)

=

k∑
i=1

yiP (Z = yi) +
∑̀
i=k+1

(−yi)P (Z = yi)

≥
k∑
i=1

yiP (Z = yi)

car, pour tout i ∈ Jk + 1, `K, −yi ≥ 0.

(ii) Par Hölder pour p = q = 1/2, on a

E(|Z|) = E(|Z| × 1) ≤
√
E(|Z|2)E(12) =

√
E(Z2) =

√
σ2 = σ

Par suite, avec la question précédente, on a

k∑
i=1

yiP (Z = yi) ≤ E(|Z|) ≤ σ.

e. D'après (13c) et la question précédente, on peut écrire

ln

(
k∑
i=1

P (Z = yi)e
−τyi

)
= ln

(
δ ×

k∑
i=1

δ−1P (Z = yi)e
−τyi

)

= ln(δ) + ln

(
k∑
i=1

δ−1P (Z = yi)e
−τyi

)

≥ ln(δ)− τδ−1
k∑
i=1

P (Z = yi)yi

≥ ln(δ)− τ

δ
σ,

ce qu'on demandait.
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f. En reprenant l'égalité de la Question (13a), et par croissance de la fonction exponentielle combinée
avec l'inégalité précédente,

P (Y ≥ 0) = ρ
k∑
i=1

P (Z = yi)e
−τyi

= ρ exp

(
ln

(
k∑
i=1

P (Z = yi)e
−τyi

))
≥ ρ exp

(
ln(δ)− τ

δ
σ
)

= ρ exp
(
−
[τσ
δ
− ln(δ)

])
g. En appliquant le résultat de la Question (9h) à Z (ce qu'on peut faire d'après (12b) et (12c)), on

a

δ ≥ σ4

4ξ4
.

On injecte alors dans l'inégalité précédente en commençant par écrire que

τσ

δ
− ln(δ) ≤ 4τξ4

σ3
− ln

(
σ4

4ξ4

)
puis

P (Y ≥ 0) ≥ ρ exp

(
−
[

4τξ4

σ3
− ln

(
σ4

4ξ4

)])
14. On suppose maintenant qu'on a deux réels c < 0 < d tels que P (C ≤ Y ≤ d) = 1.

a. On pose X = Y − E(Y ).

(i) On a clairement

[c ≤ Y ≤ d] ⇐⇒ [c− E(Y ) ≤ Y − E(Y ) ≤ d− E(Y )]

⇐⇒ [a ≤ X ≤ b]
donc

P (a ≤ X ≤ b) = P (c ≤ Y ≤ d) = 1.

Comme Y (Ω) ⊂ [c, d], on sait que E(Y ) ∈ [c, d]. Mais comme E(Y ) < 0 et d > 0 alors
E(Y ) ∈ [c, d[. On doit aussi montrer que E(Y ) > c. Supposons que E(Y ) = c. Alors, Y − c
est une v.a. positive (ou nulle) d'espérance nulle donc presque sûrement nulle, c'est-à-dire
que P (Y − c = 0) = 1 ou encore P (Y = c) = 1 ce qui contredit P (Y > 0) > 0. Ainsi,
E(Y ) ∈]c, d[, ce qui se traduit bien par

a = c− E(Y ) < 0 < d− E(Y ) = b.

(ii) D'après (6e) qu'on peut appliquer à X car X véri�e (d'après la question précédente) les
conditions de (6a), on a, pour tout t > 0,

MX(t) ≤ exp

(
1

8
t2(b− a)2

)
.

Mais, en observant que

b− a = d− E(Y )− (c− E(Y )) = d− c,
on a en fait, pour tout t > 0,

MX(t) ≤ exp

(
1

8
t2(d− c)2

)
.



DS2 VERSION B CORRECTION 15

b. On considère un n−échantillon (Y1, ..., Yn) de Y et on poseXi = Yi−E(Y ). Soit t > 0. Remarquant
que Yi = Xi + E(Y ) et que donc

n∑
i=1

Yi =

n∑
i=1

Xi + nE(Y ),

on a
n∑
i=1

Yi ≥ 0 ⇐⇒ t

n∑
i=1

Yi ≥ 0

⇐⇒ et
∑n

i=1 Yi ≥ 0 ≥ 1

⇐⇒ et
∑n

i=1XietnE(Y ) ≥ 1

⇐⇒ et
∑n

i=1Xi ≥ e−tnE(Y )

ce qui donne bien

P

(
n∑
i=1

Yi ≥ 0

)
= P

(
et

∑n
i=1Xi ≥ e−tnE(Y )

)
c. On applique alors l'inégalité de Markov à exp(t(X1 + ...+Xn)) qui est positive et admet bien une

espérance, ce qui donne

P

(
n∑
i=1

Yi ≥ 0

)
= P

(
et

∑n
i=1Xi ≥ e−tnE(Y )

)
≤ E(exp(t(X1 + ...+Xn)))

e−tnE(Y )

= MX1+...+Xn(t)etnE(Y ),

ce qu'on voulait.

d. D'après la Question (3), on a

MX1+...+Xn(t) =
n∏
i=1

MXi(t)

Mais d'après la Question (14a)− (ii), on a

MXi(t) ≤ exp

(
1

8
t2(d− c)2

)
,

ce qui donne

MX1+...+Xn(t) ≤
(

exp

(
1

8
t2(d− c)2

))n
= exp

(
n

1

8
t2(d− c)2

)
pour au �nal, aboutir à

P

(
n∑
i=1

Yi ≥ 0

)
≤ etnE(Y ) exp

(
n

1

8
t2(d− c)2

)
= exp

(
tnE(Y ) + n

1

8
t2(d− c)2

)
e. L'inégalité ci-dessus est vraie pour tout t > 0. On va choisir la valeur de t qui rend le majorant de

droite minimal. Par croissance de l'exponentielle, il faut choisir la valeur de t qui rend la fonction

t 7−→ nE(Y )t+
1

8
n(d− c)2t2

minimale. C'est un polynôme du second degré. On passe sur les étapes, mais le minimum est
atteint en

t0 = − 4E(Y )

(d− c)2
> 0 ( car E(Y ) < 0)
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En évaluant la fonction en t0, on trouve bien

nE(Y )t0 +
1

8
n(d− c)2t20 = −2n

E(Y )2

(d− c)2

ce qui donne bien

P

(
n∑
i=1

Yi ≥ 0

)
≤ exp

(
−2n

E(Y )2

(d− c)2

)
,

et conclut ce très technique mais superbe sujet.
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